1. Vectors and Parametric Equation of a Line

In this lecture, we will discuss

- Vectors
 - Cartesian Coordinates and Polar Coordinates
 - Length of a vector; Addition of Vectors and Multiplication by Scalars
- Parametric Curves

Vectors

Below, we review the definitions and basic properties of vectors.

Cartesian Coordinates

• In \mathbb{R}^2 ,

• A vector $\mathbf{v}=(v_1,v_2)$ in \mathbb{R}^2 can be written as

$$\mathbf{v} = (v_1, v_2) = v_1(1, 0) + v_2(0, 1) = v_1 \mathbf{i} + v_2 \mathbf{j},$$

where $\mathbf{i} = (1,0), \mathbf{j} = (0,1)$ are the standard unit vectors in \mathbb{R}^2 .

• A vector $\mathbf{v} = (v_1, v_2, v_3)$ in \mathbb{R}^3 can be written as

$$\mathbf{v} = (v_1, v_2, v_3) = v_1(1, 0, 0) + v_2(0, 1, 0) + v_3(0, 0, 1) = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k},$$

where $\mathbf{i}=(1,0,0),\,\mathbf{j}=(0,1,0)$, and $\mathbf{k}=(0,0,1)$ are the standard unit vectors in $\mathbb{R}^3.$

• Generally, $\mathbb{R}^n = \{(x_1,\ldots,x_n) \mid x_i \in \mathbb{R}, i=1,\ldots,n\}.$

Polar Coordinates

Question. How do you locate a point 2 kilometers southwest from here?

• Polar coordinates of a point

- 1. Choose a point *O* in a plane (pole)
- 2. Choose a half-line starting at O (polar axis)
- 3. The location of any point A in the plane is determined by
 - the distance $r(r \ge 0)$ from O to A, and
 - the angle $\theta(0 \le \theta < 2\pi)$ between the polar axis and the segment \overline{OA} .
- 4. By convention, θ is measured in radians counterclockwise from the polar axis.
- 5. We say that r and θ are the polar coordinates of A and write $A(r, \theta)$.

• Polar and Cartesian coordinates

We compare polar and Cartesian coordinates as follows:

- Place the pole at the origin and the polar axis over the positive direction of the *x*-axis.
- Note

$$x = r \cos \theta, \quad y = r \sin \theta$$

• If x and y are known,

$$r=\sqrt{x^2+y^2}, \quad an heta=y/x, \quad 0\leq heta<2\pi$$

give corresponding polar coordinates.

• Notice that $\arctan(y/x) \in (-\frac{\pi}{2}, \frac{\pi}{2})$, but the requirement for heta is $0 \le heta < 2\pi$. We have

Example 1. Find the vector of length 5 making an angle of 60° with the *y*-axis (present the vector in Cartesian Coordinates).

Length of a vector

The length of a vector is equal to the length of any of its representatives.

If
$$\mathbf{v}=(v_1,v_2)$$
 is a vector in \mathbb{R}^2 , then $\|\mathbf{v}\|=\sqrt{v_1^2+v_2^2}.$
If $\mathbf{v}=(v_1,v_2,v_3)$ is a vector in \mathbb{R}^3 , then $\|\mathbf{v}\|=\sqrt{v_1^2+v_2^2+v_3^2}.$

• Unit Vector

- A vector whose length is 1 is called a unit vector.
- If \mathbf{v} is a nonzero vector, then the vector $\frac{\mathbf{v}}{\|\mathbf{v}\|}$ is the unit vector in the same direction as \mathbf{v} .
- Constructing a unit vector $\frac{\mathbf{v}}{\|\mathbf{v}\|}$ from a nonzero vector \mathbf{v} is sometimes called *normalizing a vector*.

Example 2.

- 1. Find the length of the vector \mathbf{v} .
- 2. Find the vector parallel to \mathbf{v} with length 2.

$$\mathbf{v} = \sin \theta \mathbf{i} + \cos \theta \mathbf{j} + \mathbf{k}$$

ANS: 1. By def,
$$\|\vec{v}\| = \sqrt{\sin^2\theta + \cos^2\theta + 1^2} = \sqrt{2}$$

2. We first compute the unit vector in
the direction of
$$\vec{v}$$

 $\frac{\vec{v}}{1|\vec{v}||} = \frac{\sin\theta\vec{v} + \cos\theta\vec{j} + \vec{k}}{\sqrt{2}}$

Thus the vector in the same direction as \vec{v} with length 2 is

$$\frac{2\nu}{\|\nabla\|} = \sqrt{2} \sin \theta \, \tilde{i} + \sqrt{2} \cos \theta \, \tilde{j} + \sqrt{2} \, \tilde{h}$$

Addition of Vectors and Multiplication by Scalars

Definitions (Addition and Scalar Multiplication)

(a) (Addition of Vectors) The sum $\mathbf{v} + \mathbf{w}$ and the difference $\mathbf{v} - \mathbf{w}$ of two vectors $\mathbf{v} = (v_1, v_2)$ and $\mathbf{w} = (w_1, w_2)$ in \mathbb{R}^2 are the vectors given by $\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2)$ and $\mathbf{v} - \mathbf{w} = (v_1 - w_1, v_2 - w_2)$.

If $\mathbf{v} = (v_1, v_2, v_3)$ and $\mathbf{w} = (w_1, w_2, w_3)$ are in \mathbb{R}^3 , then $\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2, v_3 + w_3)$ and $\mathbf{v} - \mathbf{w} = (v_1 - w_1, v_2 - w_2, v_3 - w_3)$.

(b) (Scalar Multiplication) If $\mathbf{v} = (v_1, v_2) \in \mathbb{R}^2$ and $\alpha \in \mathbb{R}$, then $\alpha \mathbf{v}$ is the vector in \mathbb{R}^2 defined by $\alpha \mathbf{v} = (\alpha v_1, \alpha v_2)$. If $\mathbf{v} = (v_1, v_2, v_3)$, then $\alpha \mathbf{v} = (\alpha v_1, \alpha v_2, \alpha v_3)$ for any real number α .

Remark (Parallel Vectors). We say the vectors \mathbf{v} and \mathbf{w} are parallel if there exist a nonzero number α such that $\mathbf{w} = \alpha \mathbf{v}$.

If $\alpha > 0$, then $\alpha \mathbf{v}$ and \mathbf{v} have the same direction.

If $\alpha < 0$, then $\alpha \mathbf{v}$ and \mathbf{v} have the opposite direction.

• Triangle Law

Triangle Inequality: $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$

• Parallelogram Law

THEOREM 1.1 Properties of Addition and Multiplication by Scalars

For all vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in \mathbb{R}^2 (or, for all vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in \mathbb{R}^3) and real numbers α and β , the following properties hold:

If $\mathbf{0}$ denotes the zero vector, then $\mathbf{v} + \mathbf{0} = \mathbf{v}$. Finally, $1 \cdot \mathbf{v} = \mathbf{v}$.

Example 3.

(1) Write the vector ${f u}$ in terms of the other vectors.

(2) Write the vector ${f b}$ in terms of the other vectors.

(3) Write the vector ${f a}$ in terms of the other vectors.

Parametric Equation of a Line

Recall the Triangle Law of computing the addition $\mathbf{a} + \mathbf{b}$.

Example 4. Find an equation of the line ℓ in \mathbb{R}^2 that passes through (1, 2) and in the direction of the vector (2, -3).

Summary. Parametric Equation of a Line

- 1. Pick a point $A(a_1, a_2)$ and a vector $\mathbf{v} = (v_1, v_2)$.
- 2. Let ℓ denote the line that contains A and whose direction is the same as \mathbf{v} , and let P(x, y) be a point on it.
- 3. By the Triangle Law, $\mathbf{p} = \mathbf{a} + \mathbf{w}$, where $\mathbf{p} = (x, y)$, $\mathbf{a} = (a_1, a_2)$, and \mathbf{w} is the vector from A to P.
- 4. Since ${f w}$ is parallel to ${f v}, {f w} = t {f v}$ for some $t \in {\Bbb R}$
- 5. Thus $\mathbf{p} = \mathbf{a} + t\mathbf{v}, t \in \mathbb{R}$, which is the vector form of a parametric equation of the line ℓ .
- 6. This equation is usually written as

$$\mathbf{l}(t) = \mathbf{a} + t\mathbf{v}, \quad t \in \mathbb{R}$$

or,

$$\mathbf{l}(t)=(a_1+tv_1,a_2+tv_2),\quad t\in\mathbb{R}, ext{ or,}$$

Any of the above forms is called a parametric equation (or parametric equations) of a line.

In \mathbb{R}^3 , the parametric equations of the line ℓ that contains a point $A(a_1, a_2, a_3)$ and with direction of a vector $\mathbf{v} = (v_1, v_2, v_3)$ are

$$\mathbf{l}(t)=\mathbf{a}+t\mathbf{v}=(a_1+tv_1,a_2+tv_2,a_3+tv_3),\quad t\in\mathbb{R}.$$

Exercise 5.

- 1. Find an equation $\mathbf{r}(t)$ of the line in \mathbb{R}^3 that contains (1, 2, 0) and (0, -2, 4).
- 2. Rewrite $\mathbf{r}(t)$ as the corresponding parametric equations for the line:

ANS: (1) Since points
$$A = (1,2,0)$$
 $B = (0,-2,4)$ are
on the line l , l has the same direction
as $\overrightarrow{AB} = (-1, -4, 4)$
Thus we can treat l as a line that
contains
 $A = (1,2,0)$ and the direction

$$\overrightarrow{AB} = (-1, -4, 4)$$
Thus

$$\overrightarrow{r}(t) = (1, 2, 0) + t(-1, -4, 4)$$

$$= (1 - t, 2 - 4t, 4t)$$
(2) The corresponding

$$\times (t) = 1 - t$$

$$y(t) = 2 - 4t$$

$$z(t) = 4t$$